
Solving systems of linear equations
Example
Solve the following linear system:
2.r + 3y + 4z = 5
X + y - z = 7
4x-y + 2z = 1
1. Open the Matrix catalog and choose to create a vector in
the Ml variable.
|sHiFT|Mxrm EH2I
[T|[ìnW|
il!
M3
M4
M5
CREATE NEW,
Real matrix
Complex matrix
Complex oector
2. Create the vector of the constants in the linear system.
5 I ENTER I 7 I ENTE"^
ENTER
3. Return to the Matrix
catalog. The vector you
created is listed as Ml.
I SHIFflM/tri?«
^MATEIK CATALOG
Mi 3 REAL VECTDR .43KE I
M2 IKl REAL MATRIK
OKB
M3 IKl real MATRIK
OKE
M4 1K2 REAL MAIRI*
OKP
M5 EKE REAL MATRIK .04KB W
4. Select the M2 variable and create a new matrix.
0CI12!
Select Real matrix
m
Ml
m
M3
M4
M5
CREATE NE M ..
è
Real matrix
Real vector
Complex matrix
Complex vector
3a
ÌB
E ^
iroommaflaaBi Eiai
5. Create a new matrix and enter the equation coefficients.
2|enter13|ente^
41 enter!
11 enter 11 I enter!
fcT] 1 pENTE^ 4 Tenter!
|!2T|l(BTfE^2|ENTER!
ME
1 2 3
1 E 3
4
?
1
1
-1
3
-1 E
12-8
Matrices
Comentários a estes Manuais