HP 48gII Graphing Calculator Manual do Utilizador Página 356

  • Descarregar
  • Adicionar aos meus manuais
  • Imprimir
  • Página
    / 864
  • Índice
  • MARCADORES
  • Avaliado. / 5. Com base em avaliações de clientes
Vista de página 355
Page 11-30
Y+ Z = 3,
-7Z = -14.
The process of backward substitution in Gaussian elimination consists in
finding the values of the unknowns, starting from the last equation and
working upwards. Thus, we solve for Z first:
Next, we substitute Z=2 into equation 2 (E2), and solve E2 for Y:
Next, we substitute Z=2 and Y = 1 into E1, and solve E1 for X:
The solution is, therefore, X = -1, Y = 1, Z = 2.
Example of Gaussian elimination using matrices
The system of equations used in the example above can be written as a matrix
equation Ax = b, if we use:
.
4
3
14
,,
124
123
642
=
=
= bxA
Z
Y
X
To obtain a solution to the system matrix equation using Gaussian elimination,
we first create what is known as the augmented matrix
corresponding to A,
i.e.,
Vista de página 355
1 2 ... 351 352 353 354 355 356 357 358 359 360 361 ... 863 864

Comentários a estes Manuais

Sem comentários