HP 48gII Graphing Calculator Manual do Utilizador Página 477

  • Descarregar
  • Adicionar aos meus manuais
  • Imprimir
  • Página
    / 864
  • Índice
  • MARCADORES
  • Avaliado. / 5. Com base em avaliações de clientes
Vista de página 476
Page 15-6
As an example, in an earlier example we attempted to find a potential
function for the vector field F(x,y,z) = (x+y)i + (x-y+z)j + xzk, and got an error
message back from function POTENTIAL. To verify that this is a rotational
field (i.e., ∇×F 0), we use function CURL on this field:
On the other hand, the vector field F(x,y,z) = xi + yj + zk, is indeed
irrotational as shown below:
Vector potential
Given a vector field F(x,y,z) = f(x,y,z)i+g(x,y,z)j+h(x,y,z)k, if there exists a
vector function Φ(x,y,z) = φ(x,y,z)i+ψ(x,y,z)j+η(x,y,z)k, such that F = curl Φ =
∇× Φ, then function Φ(x,y,z) is referred to as the vector potential
of F(x,y,z).
The calculator provides function VPOTENTIAL, available through the
command catalog (‚N), to calculate the vector potential, Φ(x,y,z), given
the vector field, F(x,y,z) = f(x,y,z)i+g(x,y,z)j+h(x,y,z)k. For example, given
the vector field, F(x,y,z) = -(yi+zj+xk), function VPOTENTIAL produces
i.e., Φ(x,y,z) = -x
2
/2j + (-y
2
/2+zx)k.
It should be indicated that there is more than one possible vector potential
functions Φ for a given vector field F. For example, the following screen shot
shows that the curl of the vector function Φ
1
= [X
2
+Y
2
+Z
2
,XYZ,X+Y+Z] is the
vector F = ∇× Φ
2
= [1-XY,2Z-1,ZY-2Y]. Application of function VPOTENTIAL
Vista de página 476
1 2 ... 472 473 474 475 476 477 478 479 480 481 482 ... 863 864

Comentários a estes Manuais

Sem comentários